Industrial Waste Management - II

Hazardous Waste Management

- Hazardous solid waste treatment
- Thermal desorption
- Pyrolysis gasification
- Combustion
 - Incineration
- Industrial furnaces/ Cement kiln
- Molten glass / Plasma
- Waste to Energy
- Solidification-Stabilization
- Land Disposal

Transitioning from Land Disposal To Treatment

Government policy is essential for managing hazardous waste (HW)

- Alone HW will be handled in cheapest way
- No natural market forces for HW
- Government provides incentive for management
- Without regulation dumping will prevail
- Even the best designed landfills leak
- Cleanup is always more costly than proper management

Industrial and Agricultural Solid Waste are Application Specific

Industrial Solid Waste
- Petroleum waste
- Packaging waste
- Metal waste
- Hazardous waste

Agricultural Solid Waste
- Cellulosic-plant waste
- Manure - high nitrogen
- Food waste
Hazardous Waste Treatment and Disposal is Multifaceted

- Incinerators
- Land Fill-Solidification
- Recycling
- Water Treatment
- Extraction-Separation
- Underground Injection

Thermal Hazardous Waste Treatment Technologies

- Thermal Desorption
- Incineration
 - Dedicated (no power or product)
 - High temperature oxidation
 - Air pollution control (APC)
- Industrial Furnaces
 - Boilers – produces steam for power
 - Kilns – produces product and reduces fuel
 - Furnace – provides process heat
 - APC part of industrial process
- Pyrolysis Gasification
- Specialized Methods
 - Molten glass
 - Plasma arc

Thermal Desorption Very Flexible for Petroleum Waste Solids

- Desorption ~150-400°C
- Vapor
 - Trapped
- Solid
 - Condensed
 - Burned
- Rotary kiln or dryer
- Mobile or stationary
- Co-current or countercurrent
- Feed and product handling equipment
- Desorbed vapor
 - Trapped onto activated carbon
 - Condensed
 - Burned in afterburner or oxidizer
- Remaining solids cleaned

Thermal Desorption Pros and Cons

- Advantages
 - Low capital operating cost compared to other thermal technologies.
 - Low regulatory hurdles for permitting.
 - Can be applied in the field.
 - Allows for both destruction and recovery of organic contaminants.
- Disadvantages
 - Material larger than 2 inches needs to be crushed or removed.
 - Plastic soils tend to stick to equipment and agglomerate.
 - Pretreatment- shredding- blending with friable soils/ gypsum.
 - Highly contaminated soils will require multiple cycles.
 - Not amenable to semi-volatile or non-volatile, chlorinated hazardous constituents. (Example: PCBs, pesticides)
 - Fugitive emissions may present exposure risk to workers and environment.
Syngas Formation from Waste Involves Pyrolysis and Gasification

Pyrolysis
- Gases
- Liquids
- Char

Pyrolysis

- $\approx 500^\circ C$

Gasification

- $>1000^\circ C$

Syngas

Gas % Purox (FB-MSW)

<table>
<thead>
<tr>
<th>Gas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$</td>
<td>23.4</td>
</tr>
<tr>
<td>CO</td>
<td>39.1</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>24.4</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Higher Heating Value ~ 19 MJ/kg

Advantages
- Lower temperature process compared to incineration, increasing refractory life and reducing costs.
- High feed rates, up to 5 tons/hour.
- Downstream APC equipment needs reduced since metals and PM tend to be retained in char.
- Degree of pyrolytic reaction can be controlled to yield syngas or products for recovery. Condensable vapors with economic value can be recovered. Non-condensable vapors can be used for energy.

Disadvantages
- High capital cost.
- Char still retains hazardous constituents and metals, requiring subsequent treatment and controlled disposal.
- Fume incineration needed to destroy Products of Incomplete Combustion (PICs), and other hazardous organic constituents.

Reactions Occurring in the Gasifier

\[
\begin{align*}
C + O_2 & \rightarrow CO_2 & \text{Combustion} & \Delta H^o \\
C + CO_2 & \rightarrow 2 CO & \text{Boudouard} & + \\
C + H_2O & \rightarrow CO + H_2 & \text{Carbon-steam} & + \\
CO + H_2O & \rightarrow CO_2 + H_2 & \text{Water-gas Shift} & - \\
C + 2H_2 & \rightarrow CH_4 & \text{Hydrogenation} & - \\
\end{align*}
\]

Gasification Pros and Cons

Advantages
- Beneficial use of waste to produce syngas, energy or usable products.
- High temperature process provides for destruction of hazardous constituents.

Disadvantages
- Extremely high capital cost $30 – 50M. Large scale operation required to make economics work.
- Must be integrated into a chemical or petroleum refining plant. Not a free-standing technology like incineration.
- Off-gas treatment still required, including downstream fume incineration.
- Residues are generated which, like pyrolysis, may contain hazardous metals that require subsequent managed treatment and disposal.

Pyrolysis Pros and Cons

Advantages
- Lower temperature process compared to incineration, increasing refractory life and reducing costs.
- High feed rates, up to 5 tons/hour.
- Downstream APC equipment needs reduced since metals and PM tend to be retained in char.
- Degree of pyrolytic reaction can be controlled to yield syngas or products for recovery. Condensable vapors with economic value can be recovered. Non-condensable vapors can be used for energy.

Disadvantages
- High capital cost.
- Char still retains hazardous constituents and metals, requiring subsequent treatment and controlled disposal.
- Fume incineration needed to destroy Products of Incomplete Combustion (PICs), and other hazardous organic constituents.
Synthesis Gas Reactions

Combustion
\[\text{H}_2 + \text{CO} \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]

Fischer Tropsch Synthesis
\[(2n+1) \text{H}_2 + n \text{CO} \rightarrow \text{C}_n\text{H}(2n+2) + n \text{H}_2\text{O} \]

Direct Methanol Synthesis
\[2 \text{H}_2 + \text{CO} \rightarrow \text{CH}_3\text{OH} \]
\[3 \text{H}_2 + \text{CO}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \]
\[\text{H}_2 + \text{CO}_2 \rightarrow \text{CO} + \text{H}_2\text{O} \]

Incineration is the Controlled Combustion of Waste

Requires 3 “T’s”:
- **Time**: 2 seconds minimum
- **Temperatures**: 1000°C-1200°C
- **Turbulence**: Mixing during burn

Rotary Kiln or Fixed Grate
Secondary Combustion Chamber (afterburner)
Rapid cooling of ash to prevent PCDD and PCDF

Incineration is not the Same as Open Burning

<table>
<thead>
<tr>
<th></th>
<th>Open Burn (µg/kg)</th>
<th>Municipal Waste Incinerator (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCDDs</td>
<td>38</td>
<td>0.002</td>
</tr>
<tr>
<td>PCDFs</td>
<td>6</td>
<td>0.002</td>
</tr>
<tr>
<td>Chlorobenzenes</td>
<td>424150</td>
<td>1.2</td>
</tr>
<tr>
<td>PAHs</td>
<td>66035</td>
<td>17</td>
</tr>
<tr>
<td>VOCs</td>
<td>4277500</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Source: EPA/600/SR-97/134 March 1998

Waste to Energy =WTE

Rotary Kiln Incineration Specifically for Waste Disposal

Source: http://www.pollutionissues.com/
Advantages:
- Can be applied to a wide variety of hazardous wastes.
- Provides destruction and volume reduction of the waste.

Disadvantages
- Not amenable to waste containing high concentration of heavy metals (> 1%).
- Waste feed mechanisms often complex
- High capital cost due to extensive Air Pollution Control (APC) system and sophisticated controls required to meet emission standards.
- Ash must be treated for leachable metals prior to land disposal.

Fluidized Bed Combustion

Pros and Cons

- Fluidized sand recirculated
- Up to 140 million Btu/hr (2460 MJ/min)
- Transportable fluidized bed systems
 - Halogenated waste (> 99.99% DRE at 1300 F)
 - Lower capital and operating than rotary kiln
 - Refractory life longer than rotary kiln

Advantages:
- Well suited to refinery waste, pumpable sludges and halogenated waste.
- Excellent contact between gas and solid high DRE.
- Stable control temperature, residence time
- Vary air velocity at the bottom of bed.
- Better than other thermal methods for heat recovery.

Disadvantages
- Cannot feed containerized waste directly or non-pumpable solids.
- Pre-processing (homogenization) of waste is required so that all solids are less than ½ inch.
- Waste must have heat content > 3500 BTU/lb.
- Bed agglomeration and failure of the fluidized system can occur in the presence of > 2% sodium or other alkali salts.

Incineration: Ash Treatment Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td><10 mg/kg</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><6 mg/kg</td>
</tr>
<tr>
<td>Cresols</td>
<td><5.6 mg/kg</td>
</tr>
<tr>
<td>Dioxins</td>
<td><0.0025 mg/kg</td>
</tr>
<tr>
<td>Pesticides</td>
<td><0.087 mg/kg</td>
</tr>
<tr>
<td>Leachable Metals</td>
<td><0.1-0.75 mg/L *</td>
</tr>
</tbody>
</table>

* Toxic Characteristic Leaching Procedure (TCLP)
Incineration: Air Emission Standards

- Particulate Matter < 34 mg/dscm
- Dioxin < 0.2 ng TEQ/dscm
- Pb & Cd < 240 ug/dscm
- As, Be & Cr < 87 ug/dscm
- HCl < 77 ppm
- Hydrocarbons < 10 ppm
- CO < 100 ppm
- DRE > 99.99%
- PCB and Dioxin waste incinerators must demonstrate a minimum of 99.9999% Destruction Removal Efficiency (DRE)
- Products of Incomplete Combustion (PICs) must be evaluated in a Human Health and Ecological Risk Assessment.

Air Pollution Control Equipment Essential for Hazardous Waste Incineration

- Fabric filters – fly ash – 99% efficient
- Electrostatic precipitators – fly ash - 99% efficient
- Absorbers – Liquid/gas-70-99% acid gases
- Adsorbers Activated carbon/gas -95-98% organics
- Wet Scrubbers-
 - Flue gas desulfurization – 80-90% SO₂
 - Selective Catalytic Reduction -80-90% NOₓ

Emissions also affected by feed and combustion conditions

Industrial Furnaces: Kilns and Boilers (APC part of industrial process)

- Kilns
 - Cement
 - Lightweight Aggregate
 - Lime
- Furnaces
 - Halogen Acid
 - Sulfuric Acid
- Industrial boilers.
- Waste types and amount limited
 - Protect product and process quality
 - Cement and lightweight aggregate kilns only liquid waste
 - Minimum heat content > 5000 BTU/lb
 - Thermal substitution rate is limited to 50%.

Typical Dry Process Cement Kiln

- Alternative Fuels and Raw Materials
- Precalciner
- Gases: > 900 °C,
- Materials 700 °C
- Retention time > 3 s
- Kiln
- Gases 2000 °C
- Material 1450°C > 15 min.
- Retention time > 10 s
- Clinker
- Immobilization of metals
Boiler, Furnace and Cement Kiln Pros and Cons

- **Advantages:**
 - Displace other fuels improve economics
 - Waste producers may pay for service
 - Can be applied to a waste oils and other solid waste (tires).
 - APC equipment in place
 - Residence times in kilns are high
 - Steady state is the rule

- **Disadvantages:**
 - Industrial process and products may not permit
 - Waste feed mechanisms add complexity
 - Admixture rate may be low
 - Waste destruction may upset industrial process

Molten Glass Processes

- **Advantages:**
 - Used for the destruction and/or immobilization of hazardous wastes, particularly mixtures of hazardous waste and radioactive wastes.
 - Destroy combustible hazardous constituents and simultaneously encapsulate residuals (ash and metals) into a stable glass form.
 - Molten Glass process is known as “joule heating”
 - Electrodes in the molten glass apply a voltage passing current through alkaline ionic components in the glass. Electric resistance of the glass creates heat which is distributed evenly by convective currents in the fluid.
 - Two main applications:
 - Joule-heating glass melters
 - In situ vitrification.

- **Disadvantages:**
 - High capital and operating costs, because of electricity.
 - Costs for radioactive waste have been as high as $3.80/kg.
Plasma Arc System-Batch Process

- High voltage arc - two electrodes
- Inert gas under pressure injected sealed container of waste material
- Plasma temperature 6,000 °C
- Furnace chamber 1,800 °C
- Plasma destroys HW
- Operates at a slightly negative pressure
- Gas removal system to APC and/or production of syngas.

Plasma Arc Pros and Cons

- **Advantages**
 - Plasma systems can transfer heat much faster than conventional flames.
 - Very effective for organic halogens, (PCBs and Dioxins). Eight “9’s” DRE has been observed.
- **Disadvantages**
 - Extremely high temperatures, material durability of equipment
 - High capital costs.
 - Complex process control and highly trained professionals are required.
 - Electricity is required as an energy source. This is more expensive than most thermal processes.

Solidification and Stabilization Processes

- Solidification methods physically encapsulate hazardous waste into a solid material matrix of high structural integrity.
- Stabilization techniques chemically treat hazardous waste by converting them into a less soluble, mobile or toxic form.
- Principally used for metal-bearing wastes.
- Limited applicability to organic wastes.
- 2 Main types of processes: cement and pozzolanic.

Waste Treatment Options – Energy Considerations

- Energy Produced
- Complexity
- Gasifier - Inclinator - Heat - Electric
- Anaerobic or Aerobic Bioreactor
- Landfill – CH₄ to electricity
- Landfill – No Gas Recovery

Advantages: low cost, low technology, suitable for many types of waste
Disadvantages: increases volume, may leak
Comparison of 95 U.S. WTE plants with EPA Standard - (2001 Success story!)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Average Emission</th>
<th>EPA standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxin/Furan (TEQ basis)</td>
<td>0.05</td>
<td>0.26</td>
<td>ng/dscm</td>
</tr>
<tr>
<td>Particulate Matter</td>
<td>4</td>
<td>24</td>
<td>mg/dscm</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>6</td>
<td>30</td>
<td>ppmv</td>
</tr>
<tr>
<td>Nitrogen Oxides</td>
<td>170</td>
<td>180</td>
<td>ppmv</td>
</tr>
<tr>
<td>Hydrogen Chloride</td>
<td>10</td>
<td>25</td>
<td>ppmv</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.01</td>
<td>0.08</td>
<td>mg/dscm</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.001</td>
<td>0.020</td>
<td>mg/dscm</td>
</tr>
<tr>
<td>Lead</td>
<td>0.02</td>
<td>0.20</td>
<td>mg/dscm</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>3.5</td>
<td>100</td>
<td>ppmv</td>
</tr>
</tbody>
</table>

TEQ: Toxic Equivalents are used to report the toxicity-weighted masses of mixtures of dioxins (ng/dscm or mg/dscm): nanograms or milligrams per dry standard cubic meter (ppmv) parts per million by volume - Waste to Energy = WTE

Example: Anaerobic Biosolid Digestion Reduces Solids - Makes Methane

Anaerobic sludge digestors produce methane (65% CH₄ - 35% CO₂)

On-site electricity is produced with the methane 50% of plant power (2.2MW)

Source: Albuquerque NM Waste Water Treatment Plant

Example: Coconut Charcoal (WTE) Reduces Air Pollution Makes Electricity

Recogen-Badalgama Sri Lanka-8 MW

http://www.eurocarb.com/

Example: Palm Oil Mill Effluent and Waste to Energy Plant

Palm Oil Mill Effluent (POME) *

Fresh Fruit Bunches → Crude Palm Oil

Empty Fruit Bunches → Fiber + Shell

Anaerobic lagoon/reactor

methane → electricity, compost, electricity, charcoal

Sludge → compost
Land Disposal Units (LDUs) Consist of Landfills, Surface Impoundments and Underground Units

- Landfill
- Surface impoundment
- Waste pile
- Land treatment unit
- Injection well
- Salt dome formation
- Salt bed formation
- Underground mine
- Underground cave

Landfill Design and Construction

- **Landfill Liners**
 - Clay
 - Flexible membrane
 - Liner/waste compatibility
- **Landfill Cap**
- **Leachate**
 - Collection-Removal-Recirculation
 - Primary leachate
 - Leak detection
 - Surface water collection
 - Gas collection and removal

- **Leachate**
 - No free or bulk liquids
 - Mixed with sorbent
 - Small ampoules
 - Container is item–battery
 - Container is lab pack

Landfill with Flexible Membrane Liner Plus Compacted Soil Double Liner

- Groundwater and leachate monitoring important

Deep Well Injection is an Important Technology

- 550 Class I wells in the United States (22% for HW)
- 43% of all HW in United States !!!
Movie for Underground Injection Wells - USEPA